SCIENCE OLYMPIAD

Mission Possible – B 2016-17

Patrick Chalker
patrickchalkerso@gmail.co
m

WHAT IS MISSION POSSIBLE?

- Students design, build, test
 & document a Rube
 Goldberg-like device
- ODevice made of a series of simple machines
- Device must run autonomously
- Specific Start and End Task

GENERAL TIPS

- •ALWAYS go for reliability over "cool factor"
- •Make every simple machine run as smoothly as possible
- Make a highly reliable, consistent timer
- •Use as high-quality materials as you can afford

SAFETY REQUIREMENTS/INSPECTION

- oStudents must wear at least safety spectacles with side shields
- •Items not allowed
 - Electrical components
 - Flames
 - Remote controls or Remote timing
 - Hazardous items

OTHER POTENTIAL HAZARDS NOT ALLOWED

- Rat traps
- Model rocket engines
- Fireworks, explosives, lighters
- Flammable substances, matches
- Uncontrolled projectiles
- Any other hazardous materials

POTENTIAL ENERGY


- •No potential energy may be stored in an object.
 - Magents, springs, stretched objects
 - 1 EXCEPTION!! In the start task!!
- The only potential energy allowed is that of position due to gravity

BUILDING PARAMETERS

- •Max. Size of Device (60 cm x 60 cm x 60 cm) Points for smaller devices!
- Top & at least one vertical wall must be open or transparent
- •All scoreable transfers must be visible
- Designed to begin with the Start Task and end with the Final Task

START TASK - 100 PTS.

oPlunger-

- A team member reaches into the device, and pulls a plunger. The action of releasing the plunger must start the sequence of events.
 - •The entire plunger must return into the boundaries of the device.
- One spring is allowed in the device, only to be used in the start task.
- 100 points

SIMPLE MACHINE TRANSFERS

- Oup to 18 scoreable unique transfers for points
- Must be from one Simple Machine
 Type to a different Simple Machine
 Type

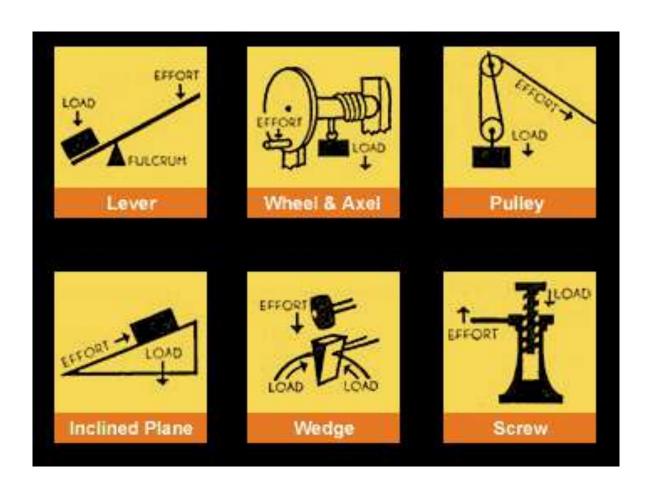
SIMPLE MACHINE TRANSFERS

Transfers: A successful transfer of energy from one type of simple machine to a different type of simple machine.

- •Receive points only if successful
- •Listed on the Transfer Sequence List (TSL)
- •All Transfers must contribute to the completion of the Final Task
- •Must contribute to only one scoreable Transfer
- No parallel sequence of Transfers allowed

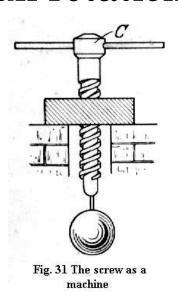
SCOREABLE TRANSFERS

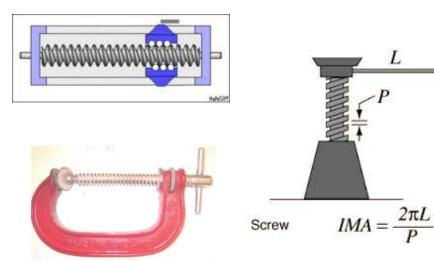
- Each Simple Machine Type may be used to score points up to three (3) times based on specific criteria
- •Scoring is based on the initial type of machine in the transfer
 - Ex. 1
 - •Pulley to a screw is a Pulley Transfer
 - Ex. 2
 - •Screw to a Pulley is a Screw Transfer

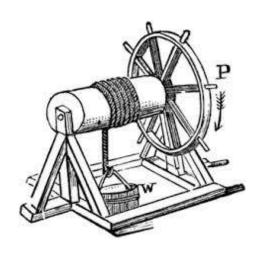

SCOREABLE TRANSFERS – CONT'D

- Each Scoreable Type of transfer must be Unique
- Transfer Types may be repeated but only one instance is scoreable
 - Ex.
 - Device has 2 instances of Pulley -> Screw, only one would count for points.
 - Ex.
 - Device has 2 instances of Lever -> Inclined Plane, with different classes of Levers in each instance.
 - Only one would be counted for points.

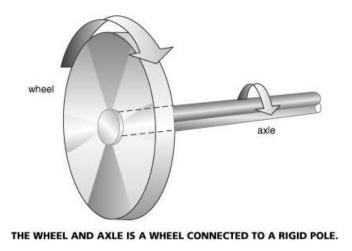
ADDITIONAL DETAILS

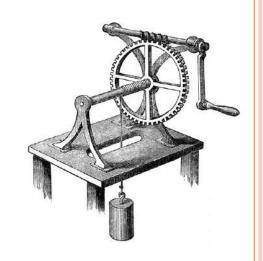

- Transfers between the Start Task and Final Task may be in any order.
- Each moveable/adjustable/physical object in the device can only be utilized by one transfer.
- Additional transfers may be built into the device between the scoreable tasks but will not earn points.
- Additional transfers must contribute to the completion of the final task.
- Additional non scoreable tasks must be listed on the Transfer Sequence List (TSL)


SIMPLE MACHINES


SCREWS

- Must complete at least two full rotations before causing the next action
- Must have a clearly visible mark to show both full rotation





WHEEL & AXLE

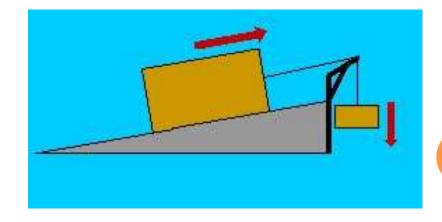
- Must lift an object 10 cm before the object causes the next action
- Must be used as a Simple Machine, input on axel/output on wheel or vice versa
 - Energy applied to the wheel must be transferred to the axle, or vice versa.

WEDGES

- Must be used to separate and go between two touching objects
- The objects can not be touching when they initiate the next action.

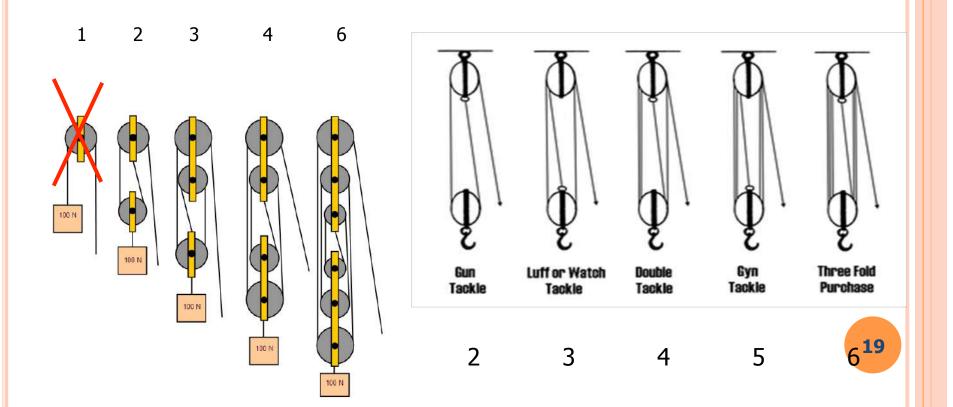
$$| \underbrace{L} \longrightarrow |$$

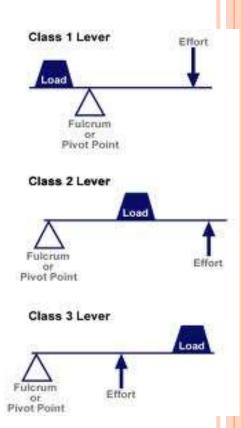
$$t \longrightarrow F_e$$


$$t \longrightarrow IMA = \frac{L}{t}$$

17

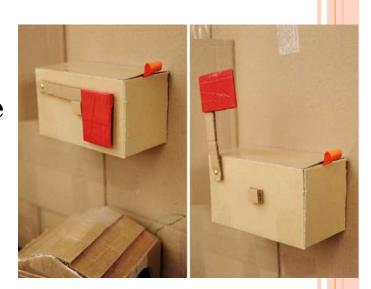
INCLINED PLANES


- Must be stationary
- Object must be pushed or pulled at least 10 cm vertically up the Inclined Plane before the object initiates the next action
- Objects must be continuously push or pulled up the plane


PULLEYS

- Must have an Ideal Mechanical Advantage (IMA) >1
- Pulleys must lift an object 10 cm, before the object initiates the next action.

LEVERS


- •Any class of lever can be used to count for points.
 - 1st Class
 - 2nd Class
 - 3rd Class
- 50 points if all three Classes of Levers initiate different successful scoreable transfers

FINAL TASK – 250 POINTS

Raise a cardboard flag

- •Rectangular flag made of corrugated cardboard, which can be easily removed from the flag pole
- •All parts of the flag must be below the top of the device in the ready to run position
- The flagpole must start parallel to the ground.
- Timing stops when the flag stops moving

TRANSFER SEQUENCE LIST - TSL

- •What is listed?
 - All transfers in operation sequence
- Follow Specific Format on NSO website
- All Transfers must be numbered and listed on the TSL and numbered in the Device
- Must be Accurate
- Submitted at Impound or Check-in
- Coaching hint Have several copies of TSL,

SAMPLE TSL

No ·	Starting Simple Machine	Action/Transfer Description	Ending Simple Machine	Transfer	Point s
1	-	Pull plunger, plunger hits marble into pulley.	Pulley	-	100
2	Pulley	Pulley lifts marble 10 cm, and spits marble out onto a 1st Class Lever	1 st Class Lever	P-> L 1st	50
3	1 st Class Lever	$1^{ m st}$ Class Lever has a string attached to $2^{ m nd}$ Class Lever	2 nd Class Lever	-	-
4	2 nd Class Lever	2 nd Class Lever lifts mass up Inclined Plane	Inclined Plane	L 2 nd -> IP	50
5	Inclined Plane	Mass falls off top of Inclined Plane onto 1 st Class Lever	1 st Class Lever	IP -> L 1 st	50
6	1 st Class Lever	1 st Class Lever lifts mass up Inclined Plane	Inclined Plane	-	-
		and so on			23
10	Wedge	Wedge separates counter weight from flag pole, raising flag and signaling end of operation	-	-	250

DEVICE OPERATION TIMING

- Timing begins when Student releases the plunger into the device
- Timing stops when:
 - The cardboard flag stops moving for the Final Task

or

- 3 minutes have elapsed (180 seconds)
- Transfers completed after the flag has raised or after 3 minutes will not be scored

DEVICE OPERATION – IDEAL OPERATION TIME

- The Ideal Operation Times for State & Nationals will be announced after impound
 - Regional 60 seconds
 - State from 61 90 seconds
 - Nationals from 91 120 seconds

SCORING – GENERAL POINTS

- 2 pts each full second of operation up to the "ideal" time.
- o 100 pts − Start Task
- o 250 pts Final Task completed in 3 mins.
- 50 pts no more that 30 min. setup
- <u>50 pts</u> each successful unique Simple Machine Transfer (max 900 pts)
- o .1 pt for each .1 cm that the dimensions of the device are under 60.0 cm x 60.0 cm x 60.0 cm

SCORING – TSL POINTS

- o25 pts − TSL submitted at Impound
- ○25 pts TSL correct format
- ○25 pts TSL & device labels correspond
- 25 pts TSL 100% accurate documentation of device operations

DEVICE OPERATION – PENALTIES

- <u>-25 pts</u> each dimension of the device that exceeds 60 cm
- -1 pt each full second device operates beyond the ideal time until Final Task completion or the 180.0 s time limit
- <u>-15 pts</u> for each time the device is touched, adjusted, or restarted.
- <u>-50 pts</u> for anything that leaves the measured dimensions of the device. One time penalty

POINTS NOT AWARDED

- Points will not be awarded for transfer completion when touches or adjustments lead directly to the transfer completion
- Transfers skipped or completed out of sequence on the TSL will not earn points
- Points will not be awarded for task completion after time as elapsed
- Stalling can lead to DQ

TIERS

Teams are ranked by the highest score within each Tier

- o Tier 1 − Devices without violations
- o Tier 2 − Devices with construction or competition violations
- o Tier 3 − Devices impounded after the deadline
- Unsafe devices must not run and teams receive participation points

TIE BREAKERS

- Fewest Penalty Points
- Number of scorable Simple Machines successfully used
- •Smallest overall dimension (L+W+H) of the device

TOURNAMENT DAY

- Impound
- Set up
 - Only 30 mins. Before you plan or are scheduled to run device
- •Be able to explain device to judges
- Go through TSL
- •Run Device
- •Remove from testing location

PARALLEL & DEAD END PATHS

- Parallel tasks have no direct relationship to one another and if one of the two tasks fails, the overall sequence of events can still continue or lead to a "dead-end" path.
- •Parallel tasks are not measured in a chronologic manner but in a causality manner. That is to say, if one task causes the next task, then they are not parallel.

PARALLEL PATHS EXAMPLES

- Example #1 Parallel Task: Two different levers hit a single switch and only one or the other is required to activate the switch.
- Example #2 Tasks that may appear to be parallel or simultaneous tasks but are not parallel or simultaneous tasks: A latch releases a spring attached to a third class lever. The spring pushes the lever, which then moves an object 15 cm and continues the chain of events.

THINGS TO CONSIDER

- Avoid questionable components
- Device may not be timed or controlled by any remote method
- •Final Task the team may not complete the task themselves
- Obvious stalling will be a DQ

COSTS & TIME COMMITMENT

- Look for Inexpensive available materials
- •Avoid the "Black Hole" phenomenon
 - Where does the money go?
- OUse a Long Term Project approach
- Consider what's best for your team
 - In your classroom vs. in a student's garage or basement
- •Parent involvement
 - Can be a life saver or a headache.
 - Who's project is this?