Forensics

Safety

- Students must wear:
 - Closed-toed shoes with socks
 - Pants or skirts that come to the ankles
 - Lab coat with long sleeves that reaches wrists and the knees or Long sleeved shirt that reaches wrists with a chemical apron that reaches the knees.
 - Skin should be covered from neck down to the wrist and toes
 - Indirect vent or unvented chemical splash proof goggles.
 - Gloves are optional but if a host requires a specific type they must notify teams
 - Long hair must be tied back

Students Can Bring

- Test Tubes (brushes & racks) or any devices to perform tests
- Eye droppers
- Funnel(s) and filter paper
- pH or litmus paper
- Spatulas, plastic spoons, stirring rods
- 9-volt Battery Conductivity tester
- Thermometer
- Flame test equipment (nichrome wire/cobalt blue glass)
- Slides and covers

Students Can Bring

- Hand Lens
- Writing Instrument
- Pencil and ruler for chromatography
- Paper towels
- Metal tongs
- Each team may bring 5 pages 2-sided, containing information in any form and from any source inserted into the rings of the binder (sheet protectors are permitted)
- Two calculators of any type dedicated to computation

Supervisors will provide

- Unknowns
- lodine reagent
- 2M HCI
- 2M NaOH
- Benedicts Solution
- Hot water bath
- Bunsen burner or equivalent
- Waste container
- Chromatography Materials
- Wash bottle with distilled water

Supervisors May Provide

- Microscope
- Probes
- Candle & matches for fibers
- Differential density solutions or other method to determine density of polymers
- Reagents to perform other tests

Main Focus

- Qualitative Analysis (20%)
- Polymers, Fibers, Hair (20%)
- Chromatography/Spectroscopy (15%)
- Crime Scene Physical Evidence (15%)
- Analysis of Crime (30%)

How To Prepare Students

- Have students develop a dichotomous key for identifying powders
- Practice identifying powders in as short a time as possible.
- Practice identifying plastics
- Practice identifying hairs (only human, bat, cow, squirrel & horse possible)
- Practice identifying fibers (cotton, wool, silk, linen, nylon, spandex, polyester)

How to Prepare Students

- Practice doing pen chromatograms/doing R_f
- Practice doing juice chromatograms/doing R_f
- Practice doing TLC (Thin Layer Chromatography) /doing R_f
- Practice identifying masses from mass specs
- Practice identifying fingerprints-primary and secondary structure as well as common fingerprint development techniques. Should know the 8 specific fingerprint patterns.

How to Prepare Students

- Practice matching DNA chromatograms & electropherograms and how DNA is copied
- Glass analysis including index of refraction
- Entomology know life cycle of the blow fly
- Practice matching shoes & tires to their tracks and soil composition
- Practice blood typing
- Analyze spatter to determine angle & velocity
- Compare seeds and pollen
- Matching bullet striations

Crime

- Step one read over crime
- Best to divide and conquer
- One partner starts on chromatography
- One partner starts on Qualitative Analysis
- Partner finishes chromatography & starts polymers
- Should finish in about 30 minutes and have remaining time to analyze.

Qualitative Analysis Powders

NaC ₂ H ₃ O ₂	NaCl	NaHCO ₃
Sodium Acetate	Sodium Chloride	Sodium Bicarbonate
Na ₂ CO ₃	LiCI	KCI
Sodium Carbonate	Lithium Chloride	Potassium Chloride
Ca(NO ₃) ₂	CaSO ₄	CaCO ₃
Calcium Nitrate	Calcium Sulfate	Calcium Carbonate
Cornstarch	Sucrose	Glucose
MgSO ₄	H_3BO_3	NH ₄ CI
Magnesium Sulfate	Boric Acid	Ammonium Chloride

Polymers

	Name	Densities/SP. GR.
•	Polyvinylchloride	1.38
•	Polypropylene	0.90
	Polycarbonate	1.20
•	High Density polyethylene	0.95
	Low Density polyethylene	0.92
	Polystyrene	1.05
	Torystyrene	1.37
•	Polyethyleneterephthalate	1.16
•	Polymethylmethacrylate	

Densities of Common Solvents

- Water
- 10% Salt Water
- 20% " "
- 25% " "
- Saturated NaCl
- 50% Ethanol/water
- 70% Isopropanol
- Mazola Oil

- 1.0g/ml
- 1.07
- 1.15
- 1.19
- 1.36
- 0.94
- 0.93
- 0.918

Polymer Scheme

Fiber Analysis

- Need to know the difference between Wool, Silk, Cotton, Linen, and Nylon, Spandex, and Polyester fibers
- Easiest to identify with burn test
 - Animal shrivel in heat
 - Wool shorter fibers than silk
 - Wool smells like burning hair
 - Vegetable burn
 - Cotton shorter fibers than Linen
 - Synthetic melts
 - Spandex stretches

Hair Analysis

- Only allowed to use Human, bat, cow, squirrel, and horse
- Best identified by looking at microscope.
- Horse very thick, coarse and round.
- Human hair thick, no distinct cuticle
 - Can be flat or round, generally no medulla
- Cow coarse diameter, abundance of ovoid bodies & medullae continues into elongated root area
- Squirrel hair is thin with a pointed tip & uniform body often banded
- Bat hair has crown like scale pattern resembling a stack of paper cups

Chromatography

- Used to separate mixtures into components
- Uses stationary paper or coffee filter or TLC paper and mobile water or solvent like alcohol
- Draw a line ~ 2 cm from bottom in pencil
- Spot on line. Use toothpick for liquids.
- Use pencil to label at top above spot.
- Put bottom only of paper in water

Chromatography Continued

- Wait until water moves up ~ 3/4ths of paper
- Draw line with pencil where water or solvent has moved to
- Make dot @ middle of each distinct separated molecule
- Measure from bottom line to each molecule mark
- Measure from bottom to solvent line
- Rf (Retardation Factor)=

migration distance of Substance migration distance of Solvent

Fingerprints

- Need to know 8 specific patterns
 - Plain Arch
 - Tented Arch
 - Radial Loop
 - Ulnar Loop
 - Plain Whorl
 - Central Pocket Whorl
 - Accidental Whorl
 - Double Loop Whorl
 - Accidental

Fingerprinting

- Emphasis is on understanding the chemistry of how the fingerprinting works
- Body gives off oils and salts that the chemicals adhere to.
- Some methods of fingerprinting development are:
 - Dusting
 - lodine fuming
 - Ninhydrin
 - Cyanoacrylate fuming

DNA

- Need to understand chemistry behind method of reproducing enough DNA for analysis (PCR).
- Easy to make electropherograms
 - Make rectangle with drawing program
 - Use spray tool to spray in different width, density lines at various distances.

 Students should understand basic structure of DNA and how DNA is copied

Index of Refraction

- Light travels at different speeds through different materials.
- Light travels slower through denser media
- Light bends when it goes from one medium to another.
- The index of refraction is the ratio of the sine of the angle the light makes coming in compared to the sine of the angle in the new media
 - Index of Refraction (n) = speed of light speed of light through material
- Objects disappear when put in a liquid with the same index of refraction

Entomology

- Depends on predictable life cycle of flies.
- Depends on temperature body experiences after death.
- It is assumed that flies will lay eggs immediately after death
- Eggs hatch in ~1.5 days as maggots
- Maggots pupate in ~ 5 days
- Flies immerge in~ 15 days

Tracks

- Use picture matching
- Bike tracks easy to make

- Have cookie sheet filled with sand
- Take a picture of tire, run through sand, and take a picture of track.
- For footprints photo bottom of shoe
 - Stomp in cookie sheet of flour
 - Stomp on black construction paper
 - Photograph paper

Soil Analysis

- Sand, Silt, Clay, and Loam
- Students allowed to touch soil to analyze
 - Sand-large grains, does not ball in hand
 - Clay-very small grains, forms ribbons in fingers
 - Silt-medium grains, forms ball, but falls apart
 - Loam-lots of organic material, black

Seeds and Pollen

- Mostly useful if found away from an area naturally found
- Can be useful if embedded in hair or fur
- Small seeds are generally windblown, but can get caught in clothing and hair
- Seed placement can also be very useful in placing time of a crime.
- Pollen very useful because pollen is very species and subspecies specific.
- Pollen needs to be compared under a microscope

Blood Serology

- Student should recognize
 - human blood cells (round, no nuclei 6-8/ microns),
 - avian blood cells (elliptical, single nucleus, 6-12 microns)
 - mammalian blood cells (no nuclei, 5.5-7.5 microns, can be elliptical or round)
 - reptile/amphibian blood cells (multiple nuclei).

Blood Typing

- Can not use real blood
- Type A has A antigens & B antibodies
 Type B has B antigens & A antibodies
 Type O has No antigens & both antibodies
 Type AB has Both A and B Antigens
- Know RH Factor and what it means in blood typing
- Blood typing works on which sugars on cell walls, A,B & O
- Fake blood can be made of several recipes. Check on-line for recipes
- Website to practice Blood Typing: <u>http://www.nobelprize.org/educational/medicine/landsteiner/index-oldgame.html</u>

Spatters

- Should know if strait drop or angle
- Should know if spatter is high, medium or low velocity
- Blood Stain types: Transfer, Passive, Projected
- Angle of impact is sin(a) =w/l, where a is angle of impact, w is width of ellipse & I is length of ellipse
- Point of origin found by drawing lines along lengths of drops
- Start with red finger paint, then mix in blue and green until correct shade
- Then dilute with water slowly until proper consistency.
- Students should put in eye dropper or use paint brush and drop straight down @ 1 cm, 10 cm. 20 cm, etc.

Bullets

- This is mostly picture matching
- The idea is to match the scratch pattern on two bullets to determine if they have been fired from the same gun.
- The scratches are a result of the machining done when the gun was made.
- In real crimes this is done with a special microscope that allows the technician to see both bullets at the same time.

The Crime

- Now we use all of the results to solve the crime.
- Logic is used.
- Use the evidence and that is used to solve the crime
- The correct answer may be one of the suspects, more than one of the suspects, all of the suspects, or none of the suspects.
- Use all the evidence to determine the criminal(s) and to exonerate the other suspects.
- BE SURE TO LEAVE ENOUGH TIME TO COMPLETE THE ANALYSIS!!

Resources

- National Science Olympiad Website https://www.soinc.org/forensics-c
- For Student Tests <u>https://scioly.org/wiki/index.php/Forensics</u>
- Quizlet
 https://quizlet.com/19852385/scienceolympiad-forensics-flash-cards/

Resources Continued

• How to do flame tests:

- http://www.youtube.com/watch?v=oJcDOTzr5Cw
- http://www.youtube.com/watch?v=q DhUTVTqeg&fea ture=related
- http://www.youtube.com/watch?v=vFx86jkzygY&feature=related
- Source for mass specs:
 http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
- http://www2.chemistry.msu.edu/faculty/reusch/ virttxtjml/spectrpy/massspec/masspec1.htm